Applications of the Hardy - Littlewood Circle Method

نویسنده

  • Daniel Baczkowski
چکیده

1 Waring’s Problem Problem 1. (Waring’s) For every natural number k ≥ 2 there exists a positive integer s such that every natural number is the sum of at most s k powers of natural number (for example, every natural number is the sum of at most 4 squares, or 9 cubes, or 19 fourth powers, etc.). The affirmative answer, known as the Hilbert-Waring theorem, was provided by Hilbert in 1909. Let A = (am) denote a strictly increasing sequences of nonnegative integers. Consider F (z) = ∞ ∑

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harish-Chandra Research Institute Introduction to the circle method of Hardy, Ramanujan and Littlewood

In these lectures we give an overview of the circle method introduced by Hardy and Ramanujan at the beginning of the twentieth century, and developed by Hardy, Littlewood and Vinogradov, among others. We also try to explain the main difficulties in proving Goldbach’s conjecture and we give a sketch of the proof of Vinogradov’s three-prime Theorem.

متن کامل

Hardy-Littlewood varieties and semisimple groups

We are interested in counting integer and rational points in affine algebraic varieties, also under congruence conditions. We introduce the notions of a strongly Hardy-Littlewood variety and a relatively Hardy-Littlewood variety, in terms of counting rational points satisfying congruence conditions. The definition of a strongly Hardy-Littlewood variety is given in such a way that varieties for ...

متن کامل

Hardy-littlewood System and Representations of Integers by an Invariant Polynomial

Let f be an integral homogeneous polynomial of degree d, and let Vm = {X : f(X) = m} be the level set for each m ∈ N. For a compact subset Ω in V1(R), set Nm(f, Ω) = #Vm(Z) ∩ mΩ. We define the notion of Hardy-Littlewood system for the sequence {Vm}, according as the asymptotic of Nm(f, Ω) as m → ∞ coincides with the one predicted by Hardy-Littlewood circle method. Using a recent work of Eskin a...

متن کامل

Additive Problems with Prime Variables the Circle Method of Hardy, Ramanujan and Littlewood

In these lectures we give an overview of the circle method introduced by Hardy and Ramanujan at the beginning of the twentieth century, and developed by Hardy, Littlewood and Vinogradov, among others. We also try and explain the main difficulties in proving Goldbach’s conjecture and we give a sketch of the proof of Vinogradov’s three-prime Theorem. 1. ADDITIVE PROBLEMS In the last few centuries...

متن کامل

Density of Integer Points on Affine Homogeneous Varieties

A basic problem of diophantine analysis is to investigate the asymptotics as T of (1.2) N(T, V)= {m V(Z): Ilmll T} where we denote by V(A), for any ring A, the set of A-points of V. Hence I1" is some Euclidean norm on R". The only general method available for such problems is the Hardy-Littlewood circle method, which however has certain limitations, requiring roughly that the codimension of V i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008